Sensitivity to Longitudinal VBS at future hadron colliders

Aram Apyan¹, Chilufya Mwewa², <u>Luka Nedic</u>³, Marc-Andre Pleier², Karolos Potamianos³

Brandeis University 1 , BNL 2 , University of Oxford 3

July 20, 2022

Contents

This presentation summarises the work of the paper, arxiv:2203.07994

- Introduction
- Sample Generation
- Event Selection
- Analysis
- Results
- Future Research

Introduction

- VBS is a key probe of the electroweak symmetry breaking mechanism.
- Higgs contributions to longitudinally polarised VBS cancel divergences, preserving unitarity.
- The goal of our study is to investigate the prospect of measuring the polarized scattering of same-sign $W^{\pm}W^{\pm}jj$ production at a future high energy pp machine.

Introduction

■ The leptonic decay mode of pure EW production of same-sign $W^{\pm}W^{\pm}jj$ is a promising final state; background contribution from the QCD-induced production of $W^{\pm}W^{\pm}jj$ is small.

Sample Generation

- Events modeled at LO using MG5 3.1.1+ with NNPDF2.3 PDF set and PYTHIA8 for showering.
- Signal: $W^{\pm}W^{\pm}jj$ electroweak samples generated,
 - $W_L^{\pm}W_L^{\pm}jj$
 - $W_L^{\pm}W_T^{\pm}jj$
 - $W_T^{\pm}W_T^{\pm}jj$
 - Inclusive $W^{\pm}W^{\pm}jj$ for validation.
- Background samples generated:
 - W[±]W[±]jj QCD
 - WZjj Electroweak and QCD
 - tI^+I^-j (tZq).
- Samples simulated with Delphes using a generic FCC detector card to introduce detector effects.
- Samples generated for three CoM energies, $\sqrt{s}=27,50,100$ TeV with an integrated luminosity of 30 ab^{-1} for pp collisions

Event Selection

- Signal events typically include
 - Two high p_T (transverse momentum) same-charge leptons
 - Large missing transverse momentum, E_T^{miss}
 - lacksquare Two forward/backward jets with large di-jet invariant mass, M_{jj}
- Event selection applied to maximise background rejection.
- Event selection optimised for $\sqrt{s} = 100 \, TeV$ and applied to all \sqrt{s} .

Event Selection

■ Selection criteria used for $W^{\pm}W^{\pm}jj$ events.

Selection type	Requirement
Number of leptons	Exactly 2 same-charge leptons
Lepton p_T	$p_T \geq 15$ GeV
Number of jets	≥ 2
Jet p_T	$p_T \geq 50 \text{ GeV}$
Di-lepton invariant mass	$M_{II} \geq 60 ext{GeV}$
Z-veto	$ M_{II}-M_{Z} >10$ GeV
Di-jet invariant mass	$M_{jj} \geq 2 \; {\sf TeV}$
Missing transverse momentum	$E_T^{miss} \ge 50 \text{ GeV}$

Analysis

- The sensitivity to the polarization fractions is estimated using a profile likelihood fit.
 - Normalization uncertainty of 2% applied to all processes.
 - Uncertainties with limited number of simulated events included.
 - No other sources of systematic uncertainties are considered.
- The distribution used in the fit, $\Delta \phi_{jj}$, is shown below for $\sqrt{s}=100$ TeV after event selection.

lacktriangle Where $\Delta\phi_{jj}$ is separation in azimuthal angle ϕ between the two leading jets in ho_T .

- イロト (個) (注) (注) (注) (注) りの(

Results

■ The table shows three signal strength parameters, μ_{LL} , μ_{LT} and μ_{TT} defined as the ratio to the SM cross-section.

Polarization	Signal Strength					
	$\sqrt{s} = 27 \text{ TeV}$	$\sqrt{s} = 50 \text{ TeV}$	$\sqrt{s}=100 \text{ TeV}$			
μ_{LL}	1 ± 0.39	1 ± 0.22	1 ± 0.17			
μ_{LT}	1 ± 0.11	1 ± 0.10	1 ± 0.04			
μ_{TT}	1 ± 0.08	1 ± 0.05	1 ± 0.02			

Future Work

- Generate new samples with much higher statistics and latest PDF set
- Introduce theory uncertainties
- Introduce another discriminating variable based on machine learning
- Look at our sensitivity to BSM models, e.g. doubly charged Higgs model
- Any of your suggestions?

Backup - Event yields

Process	Signal Region								
	$\sqrt{s} = 27 \text{ TeV}$			$\sqrt{s} = 50 \text{ TeV}$			$\sqrt{s} = 100 \text{ TeV}$		
W_LW_L	12503.6	±	4795.85	48531.4	±	10527.6	163489	±	26922.9
W_LW_T	52144.3	\pm	5574.84	203074	\pm	18270.4	688367	\pm	26560.9
W_TW_T	95923.2	\pm	6455.61	396749	\pm	19167.6	1423190	\pm	26148.2
WW QCD	138386	\pm	2488.8	577235	\pm	4828.33	2099750	\pm	12029
tZq	5203.87	\pm	93.9418	32999.1	\pm	275.972	153951	\pm	860.373
WZ EW	26343.7	\pm	475.701	115216	\pm	964.227	425249	\pm	2412.36
WZ QCD	28343.9	\pm	505.25	174787	\pm	1457.15	1002530	\pm	5522.47
Total	198277	±	598.02	900238	±	1249.77	3681480	士	2437.95

Luka Nedic 11

Backup: Mjj

Backup: MII

Backup: $\Delta \phi_{jj}$

Backup: $\Delta \eta_{jj}$

